

HILTI ANCHOR ROD SPECIFICATIONS AND TECHNICAL DATA

Standard pre-cut anchor rods and extended anchor rod program

As global leaders in chemical anchoring systems, Hilti has provided threaded rod for anchoring applications in materials such as concrete and masonry for many years.

We offer a broad portfolio of high quality pre-cut and custom cut-to-length Hilti anchor rods in thread diameters up to 2 ½ inches that in conjunction with the Hilti injectable mortars and adhesive capsules provide more reliable and higher performing fastening points, and help enable the installer to complete chemical anchoring applications more efficiently, hassle-free, without compromising the budget.

Hilti HIT-Z Anchor rod

SAFE

For use with Hilti HIT-HY 200 injectable mortar, the Hilti HIT-Z anchor rod provides better safety and load capacity combined with up to 60% faster installation due to zero-cleaning SafeSet Technology*.

Hilti HAS Anchor rod

Broad portfolio of eight different material and coating types including high-strength, hot-dipped galvanized, and stainless steel for the demand of increased performance and usability with capsule systems.

New enhanced carbon steel HAS rod program

All carbon steel HAS rods now meet the requirements of the ASTM F1554, which allows engineers to design ductile fastening points with predictable steel failure for seismic applications in the three most common and relevant steel grades 36, 55 and 105.

The indication of the steel grade in the head marking and the product name simplifies the selection and identification of the right anchor rods. Included matching high quality nuts and washers will help the installer get the job done quickly, efficiently, and correctly.

^{*} Zero-cleaning with SafeSet Technology with the Hilti HIT-Z anchor rod is currently for use at a base material temperature above 41 °F (+5 °C). For use below 41 °F (+5 °C) and for full installation procedures refer to the product instructions for use on the product packaging or contact Hilti.

HAS AND HIT-Z ANCHOR RODS

The following technical data is for HAS threaded rods and HIT-Z anchor rods available in the standard pre-cut rod program and the extended rod program.

Specifications and physical properties of Hilti HAS threaded rods and Hilti HIT-Z anchor rods

	Threaded Rod Specification	Units	Specified Strei f	Ultimate ngth, ^{ta} max. ⁵	Minimum Specified Yield Strength 0.2% Offset, f _{ya}	f _{uta} / f _{ya}	Elongation, Min. %	Reduction of Area, Min. %	Specification for Nuts and Washers
	HAS-V-36 / HAS-V-36 HDG ASTM F1554, Grade 36 ^{1,2,8}	psi (MPa)	58,000 (400)	80,000 (552)	36,000 (248)	1.61	23	40	Nuts: ASTM A194/194M, Grade 2H, Heavy or ASTM A563-15 Grade A Heavy Hex (zinc/HDG)
BON STEEL	HAS-E-55 / HAS-E-55 HDG ASTM F1554, Grade 55 ^{1,2,8}	psi (MPa)	75,000 (517)	95,000 (655)	55,000 (379)	1.36	21	30 (3/8" - 2") 22 (2-1/4" - 2-1/2")	or ASTM A563-15 Grade A Hex (zinc) or A563-15 Grade C Hex (HDG) Washers: ASTM F436 Type 1
CAR	HAS-B-105 / HAS-B-105 HDG ASTM A193, Grade B7 ^{1,3} ASTM F1554, Grade 105 ^{1,2,8}	psi (MPa)	125,000 ⁽⁶⁾ (862) ⁽⁶⁾	150,000 (1,034)	105,000 (724)	1.19	16 (B7) 15 (Gr. 105)	50 (B7) 45 (Gr. 105)	Nuts: ASTM A194/194M, Grade 2H, Heavy or ASTM A563-15 Grade C Hex Washers: ASTM F436 Type 1
	HIT-Z Anchor rod (HIT-HY 200 only) Unalloyed carbon steel ¹	psi (MPa)	94,200 (650)	NA	75,300 (519)	1.25	8	20	Nuts: ASTM A563 Gr. A Washers: ASTM F844, HV and ANSI B18.22.1 Type A Plain
	HAS-R 304 / 316 3/8-in. to 5/8-in. AISI Type 304 / 316 ASTM F 593 CW1 ⁴	psi (MPa)	100,000 (690)	150,000 (1,034)	65,000 (448)	1.54	20	-	
SS STEEL	HAS-R 304 / 316 3/4-in. to 1-in. AISI Type 304 / 316 ASTM F 593 CW2 ⁴	psi (MPa)	85,000 (586)	140,000 (966)	45,000 (310)	1.89	25	-	Nuts: ASTM F594
STAINLES	HAS-R 304 / 316 1/4-in. and 1-1/8-in. to 2-in. ASTM A193 Grade 8(M), Class 1 ³	psi (MPa)	75,000 ⁽⁷⁾ (517) ⁽⁷⁾	NA	30,000 (207)	2.50 ⁽⁷⁾	30	50	Washers: ASTM A240 and ANSI B18.22.1 Type A Plain
	HIT-Z-R Anchor rod (HIT-HY 200 only) Grade 316	psi (MPa)	94,200 (650)	NA	75,300 (519)	1.25	8	20	

¹ All carbon steel threaded rods are zinc plated in accordance with ASTM F1941 Fe/Zn 5 AN, with nuts and washers zinc plated in accordance with ASTM B633 SC 1 Type III.

All hot-dipped galvanized threaded rods, nuts, and washers are zinc plated in accordance with ASTM F2329. Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength.

3 Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service.

 Standard Steel Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs.
Maximum specified steel strength according to ASTM standard. NA indicates that ASTM standard does not publish a maximum value.
For designs according to CSA A23.3-14 Annex D, the maximum value of f_{us} is 860 MPa (124,700 psi) per clause D.6.1.2.
For calculating steel strength, ACI 318-14 section 17.4.1.2 and CSA A23.3-14 clause D.6.1.2. limit the ultimate strength to 1.9 f_{us}.
Thus, f_{us} = 57,000 psi (393 MPa) for calculation purposes when determining steel strength in tension (N_u) and shear (V_u).
S/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

STRENGTH DESIGN ACCORDING TO ACI 318

The following steel design information is for Hilti HAS threaded rods and HIT-Z anchor rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with ACI 318 Chapter 17. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods and Hilti HIT-Z anchor rods for use with ACI 318 Chapter 17

Design information Symbol Online 3/8 1/2 5/8 3/4 7/8 1 Rod O.D. d in. 0.375 0.5 0.625 0.75 0.875 1 Rod offective cross-sectional area A			O weak at	Linita	Units Nominal Rod Diameter (in.)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Design Informa	tion	Symbol	Units	3/8	1/2	5/8	3/4	7/8	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rod effective c	ross-sectional area	A	in. ²	0.0775	0.1419	0.2260	0.3345	0.4617	0.6057
$ \begin{array}{c} \underbrace{ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		1	se	(mm²)	(50)	(92)	(146)	(216)	(298)	(391)
$ \begin{array}{c} \begin{array}{c} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	1,4		N _{ea}	lb	4,495	8,230	13,110	19,400	26,780	35,130
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 8 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4$	r 36	Nominal strength as governed by steel strength	Sd	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-/-36 6 Н 4 G		V.,	lb	2,695	4,940	7,865	11,640	16,070	21,080
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4S-\ -V-3 155		sa	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)
$\frac{1}{9} \frac{1}{9} \frac{1}$	AS-AS-	Reduction factor, seismic shear	α _{v,seis}	-			0	.6		
$\frac{1}{9} + \frac{1}{9} + \frac{1}$	H	Strength reduction factor Φ for tension ²	Φ	-			0.	75		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	۹	Strength reduction factor Φ for shear ²	Φ	-			0.	65		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\$	4		N	lb	5,815	10,645	16,950	25,090	34,630	45,430
$\frac{10}{9} \pm \frac{1}{9} + 1$	JG : 55	Nominal strength as governed by steel strength	sa	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
$\frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{6}{2} \frac{1}{2} \frac{1}$	55 55 7 HI 9 HI		V	lb	3,490	6,385	10,170	15,055	20,780	27,260
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S-E 55∠ 557		v sa	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)
$\frac{1}{2} \int_{C}^{2} \int_{C}^$	HA AS-I AS-I	Reduction factor, seismic shear	α _{v,seis}	-			0.	7 (3)		
$\frac{1}{2} \frac{1}{2} \frac{1}$	E E E	Strength reduction factor Φ for tension ²	Φ	-			0.	75		
$\frac{1}{1000} \sum_{i=0}^{5} \sum_{i=$	¥	Strength reduction factor Φ for shear ²	Φ	-			0.	65		
$\frac{1}{100} \frac{1}{100} \frac{1}$	A		N	lb	9,690	17,740	28,250	41,815	57,715	75,715
1000000000000000000000000000000000000	and 105	Nominal atranath as governed by steel atranath	IN _{sa}	(kN)	(43.1)	(78.9)	(125.7)	(186.0)	(256.7)	(336.8)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 H1 Gr. B7 Gr.	Nominal strength as governed by steel strength	V	lb	5,815	10,645	16,950	25,090	34,630	45,430
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-10 -103		V _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AAS N A F15	Reduction factor, seismic shear	α _{v,seis}	-			0.	7 (3)		
Constraint Constraint Constraint Strength reduction factor Φ for shear 2 Φ - 0.65	H A H A	Strength reduction factor Φ for tension ²	Φ	-			0.	75		
	AS	Strength reduction factor Φ for shear ²	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
□ lb 7,750 14,190 22,600 28,435 39,245 51,485	ē			lb	7,750	14,190	22,600	28,435	39,245	51,485
^θ / _{sa} (kN) (34.5) (63.1) (100.5) (126.5) (174.6) (229.0)	Ste		N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)
Nominal strength as governed by steel strength	a, C ss ¹	Nominal strength as governed by steel strength		lb	4,650	8,515	13,560	17,060	23,545	30,890
⁻ ⁻ ⁻ _{sa} ⁻ _δ ⁻ _{sa} (kN) (20.7) (37.9) (60.3) (75.9) (104.7) (137.4	F59 F59 inle		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)
$\vec{v}_{r} \geq \vec{v}_{r}$ Reduction factor, seismic shear $\alpha_{v_{seis}}$ - $0.7^{(3)}$	RM Stal	Reduction factor, seismic shear	α _{v.seis}	-			0.1	7 (3)		
Strength reduction factor Φ for tension ² Φ - 0.65	AS-F AS	Strength reduction factor Φ for tension ²	Φ	-			0.	65		
Σ Strength reduction factor Φ for shear ² Φ - 0.60	Η	Strength reduction factor Φ for shear ²	Φ	-			0.	60		
lb 7,305 13,375 21,305 31,470 -			İ	lb	7,305	13,375	21,305	31,470	-	-
¯ _α ∑ (kN) (32.5) (59.5) (94.8) (140.0)	ل م		N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-
Nominal strength as governed by steel strength	ы Б С	Nominal strength as governed by steel strength		lb	3,215	5,885	9,375	13,850	-	-
V_{sa} (kN) (14.3) (26.2) (41.7) (61.6)	20 20		V _{sa}	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	-	-
Reduction factor, seismic shear α_{unside} - 1.00 0.65	H ∠H	Reduction factor, seismic shear	ανεσίε	-	1.00		0.65			
Ξ Strength reduction factor Φ for tension ² Φ - 0.65 -		Strength reduction factor Φ for tension ²	Φ	-		0.	65			-
\pm Strength reduction factor Φ for shear ² Φ - 0.60 -	ΤU	Strength reduction factor Φ for shear ²	Φ	-		0.	60			-
lb 7.305 13.375 21.305 31.472				lb	7.305	13.375	21.305	31,472	-	-
$\overset{\circ}{\mathbb{R}} \cong \frac{1}{2}$ (kN) (32.5) (59.5) (94.8) (140.0)	Pod ≥ -		N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-
Image: Second) on Stee	Nominal strength as governed by steel strength		lb	4,385	8,025	12,785	18,885	-	-
$V_{sa} = (kN) = (19.5) = (35.7) = (36.9) = (84.0) = -$	200 200 ss 5		V _{sa}	(kN)	(19.5)	(35.7)	(56.9)	(84.0)	-	-
$\alpha \neq \alpha$ Reduction factor, seismic shear α - 1.00 0.75 0.65	H≺ A H≺ ≻ Inle	Reduction factor, seismic shear	α.	-	1.00	0.75	0	65		-
$\dot{N} \stackrel{L}{=} \overset{\sigma}{=}	HIT- Sta	Strength reduction factor Φ for tension ²	,seis	-		0	65			
Ξ Strength reduction factor Φ for shear ² Φ - 0.60 -	ΞŬ	Strength reduction factor Φ for shear ²	0	-		0.	60			-

¹ Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and washers must be appropriate for rod strength.

² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix C are used, the appropriate value of Φ must be determined in accordance with ACI 318 D.4.4. ³ For HIT-RE 500 V3, the value of α_{value} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti. ⁴ 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and

mechanical property requirements of ASTM F1554.

STRENGTH DESIGN ACCORDING TO ACI 318

The following steel design information is for Hilti HAS threaded rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with ACI 318 Chapter 17. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods for u	se with ACI 318 Chapter 17
--	----------------------------

Design Inforn	nation	Symbol	Units			Nomina	l Rod Diam	eter (in.)		
				1-1/8	Nominal Rod Diameter (in.) 1-1/8 1-1/4 1-1/2 1-3/4 2 2-1/4 2-1 1.125 1.25 1.5 1.75 2 2.25 2 0.7633 0.9691 1.405 1.90 2.50 3.25 4.1 (492) (625) (906) (1,226) (1,613) (2,097) (2,5 44,270 56,210 81,490 110,200 145,000 - - (196.9) (250.0) (362.5) (490.2) (645.0) - - 26,560 33,725 48,895 66,120 87,000 - - (118.1) (150.0) (217.5) (294.1) (387.0) - - 0.65 - - - - - - 57,250 72,685 105,375 142,500 187,500 - - 57,250 72,685 105,375 142,500 112,500 - - 152.8) <td>2-1/2</td>			2-1/2		
Rod O.D.		d	in.	1.125	1.25	1.5	1.75	2	2.25	2.5
Rod effective	cross-sectional area	Δ	in.2	0.7633	0.9691	1.405	1.90	2.50	3.25	4.00
		se	(mm²)	(492)	(625)	(906)	(1,226)	(1,613)	(2,097)	(2,581)
-		N	lb	44,270	56,210	81,490	110,200	145,000	-	-
ы С С	Nominal strength as governed by steel strength	sa	(kN)	(196.9)	(250.0)	(362.5)	(490.2)	(645.0)	-	-
- 36 8 HI 4 G		V	lb	26,560	33,725	48,895	66,120	87,000	-	-
S-V 7-36		v _{sa}	(kN)	(118.1)	(150.0)	(217.5)	(294.1)	(387.0)	-	-
AS-V M F-	Reduction factor, seismic shear	α _{v,seis}	-		0.6					
T I Strength Strength	Strength reduction factor f for tension ²	φ	-			0.75			-	-
٩	Strength reduction factor f for shear ²	φ	-			0.65			-	-
-		N	lb	57,250	72,685	105,375	142,500	187,500	-	-
G 55		IN _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	-	-
55 HD Gr	Nominal strength as governed by steel strength		lb	34,350	43,610	63,225	85,500	112,500	-	-
3-E- 555		V _{sa}	(kN)	(152.8)	(194.0)	(281.2)	(380.3)	(500.4)	-	-
AS-E AS-E	Reduction factor, seismic shear	α _{v,seis}	-			0.7 (3)			-	-
STI	Strength reduction factor f for tension ²	φ	-			0.75			-	-
٩.	Strength reduction factor f for shear ²	φ	-			0.65			-	-
		N	lb	95,415	121,140	175,625	237,500	312,500	406,250	500,000
and 105		IN _{sa}	(kN)	(424.4)	(538.9)	(781.2)	(1,056.4)	(1,390.1)	(1,807.1)	(2,224.1)
105 5 HI 87 Gr.	Nominal strength as governed by steel strength	N	lb	57,250	72,685	105,375	142,500	187,500	243,750	300,000
		V _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	(1,084.2)	(1,334.5)
A B A B A B A B A B A B A B A B A B A B	Reduction factor, seismic shear	α _{v,seis}	-				0.7 (3)			
HA AST STN	Strength reduction factor f for tension ²	φ	-				0.75			
A A	Strength reduction factor f for shear ²	φ	-				0.65			
), el		N	lb	43,510	55,240	80,085	108,300	142,500	-	-
Ste 8(M		IN _{sa}	(kN)	(193.5)	(245.7)	(356.2)	(481.7)	(633.9)	-	-
Gr. 1 - Gr.	Nominal strength as governed by steel strength	N	lb	26,105	33,145	48,050	64,980	85,500	-	-
ainl 93, åss		V _{sa}	(kN)	(116.1)	(147.4)	(213.7)	(289.0)	(380.3)	-	-
R St 1 A1 Cle	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
AS-I STN	Strength reduction factor f for tension ²	φ	-			0.75			-	-
Τ̈́	Strength reduction factor f for shear ²	φ	-			0.65			-	-

¹ Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with ACI 318-14 Chapter 17 Eq. 17.4.1.2 and Eq. 17.5.1.2b. Nuts and washers must be appropriate for rod strength.
² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix

² For use with the load combinations of IBC Section 1605.2, ACI 318-14 5.3, or ACI 318-11 D.4.3, as set forth in ACI 318-14 17.3.3 or ACI 318-11 D.4.3. If the load combinations of ACI 318 Appendix C are used, the appropriate value of φ must be determined in accordance with ACI 318 D.4.4.

 3 For HIT-RE 500 V3, the value of $\alpha_{_{VSBB}}$ can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

STRENGTH DESIGN ACCORDING TO ACI 318

The following are strength design values calculated from data on the previous pages. This is intended for adhesive anchors designed in accordance with ACI 318-14 Chapter 17 (and Appendix D for earlier editions of ACI 318) and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design strength for Hilti HAS threaded rods for use with ACI 318-14 Chapter 17

	HAS-V AST	-36 / HAS-V-3 M F1554 Gr. 3	36 HDG 36 ^{4,6}	HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 55 4.56			HAS-B-1 AS ASTM	105 / HAS-B- ТМ А193 В7 а И F 1554 Gr. 1	105 HDG and 105 ^{4,6}	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ⁵ ASTM A193 (1-1/8-in to 2-in) ⁴			
Nominal anchor diameter in.	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa.eq} Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ ΦV _{sa,eq} Ib (kN)	
3/8	3,370 (15.0)	1,750 (7.8)	1,050 (4.7)	4,360 (19.4)	2,270 (10.1)	1,590 (7.1)	7,270 (32.3)	3,780 (16.8)	2,645 (11.8)	5,040 (22.4)	2,790 (12.4)	1,955 (8.7)	
1/2	6,175 (27.5)	3,210 (14.3)	1,925 (8.6)	7,985 (35.5)	4,150 (18.5)	2,905 (12.9)	13,305 (59.2)	6,920 (30.8)	4,845 (21.6)	9,225 (41.0)	5,110 (22.7)	3,575 (15.9)	
5/8	9,835 (43.7)	5,110 (22.7)	3,065 (13.6)	12,715 (56.6)	6,610 (29.4)	4,625 (20.6)	21,190 (94.3)	11,020 (49.0)	7,715 (34.3)	14,690 (65.3)	8,135 (36.2)	5,695 (25.3)	
3/4	14,550 (64.7)	7,565 (33.7)	4,540 (20.2)	18,820 (83.7)	9,785 (43.5)	6,850 (30.5)	31,360 (139.5)	16,310 (72.6)	11,415 (50.8)	18,485 (82.2)	10,235 (45.5)	7,165 (31.9)	
7/8	20,085 (89.3)	10,445 (46.5)	6,265 (27.9)	25,975 (115.5)	13,505 (60.1)	9,455 (42.1)	43,285 (192.5)	22,510 (100.1)	15,755 (70.1)	25,510 (113.5)	14,125 (62.8)	9,890 (44.0)	
1	26,350 (117.2)	13,700 (60.9)	8,220 (36.6)	34,075 (151.6)	17,720 (78.8)	12,405 (55.2)	56,785 (252.6)	29,530 (131.4)	20,670 (91.9)	33,465 (148.9)	18,535 (82.4)	12,975 (57.7)	
1-1/8	33,205 (147.7)	17,265 (76.8)	10,360 (46.1)	42,940 (191.0)	22,330 (99.3)	15,630 (69.5)	71,560 (318.3)	37,215 (165.5)	26,050 (115.9)	32,635 (145.2)	16,970 (75.5)	10,180 (45.3)	
1-1/4	42,160 (187.5)	21,920 (97.5)	13,150 (58.5)	54,515	28,345 (126.1)	19,840 (88.3)	90,855 (404.1)	47,245 (210.2)	33,070 (147.1)	41,430 (184.3)	21,545 (95.8)	12,925	
1-1/2	61,120 (271.9)	31,780 (141.4)	19,070 (84.8)	79,030	41,095 (182.8)	28,765 (128.0)	131,720 (585.9)	68,495 (304.7)	47,945 (213.3)	60,065 (267.2)	31,235 (138.9)	18,740 (83.4)	
1-3/4	82,650 (367.6)	42,980	25,790	106,875	55,575	38,905	178,125 (792.3)	92,625	64,835 (288.4)	81,225 (361.3)	42,235	25,340	
2	108,750 (483,7)	56,550 (251.5)	33,930 (150.9)	140,625	73,125	51,190 (227.7)	234,375	121,875	85,315 (379.5)	106,875 (475.4)	55,575 (247.2)	33,345 (148.3)	
2-1/4	-	-	-	-	-	-	304,690 (1,355,3)	158,440	(493.3)	-	-	-	
2-1/2	-	-	-	-	-	-	375,000 (1,668.1)	195,000 (867.4)	136,500 (607.2)	-	-		

¹ Tensile = $\Phi A_{saN} I_{uac}$ as noted in ACI 318-14 17.4.1.2 ² Shear = $\Phi 0.60 A_{saV} I_{uac}$ as noted in ACI 318-14 17.5.1.2b. ³ Selsmic Shear = $\alpha_{Vasile} \Phi V_{uac}$ reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-E, HAS-E, and HAS-R (W1 and CW2 threaded rods (including HDG rods). Refer to ESR-3814. ⁴ HAS-V, HAS-E (3/8-in to 2-in), HAS-B, and HAS-R (Class 1; 1-1/8-in to 2-in) threaded rods are considered ductile steel elements (included HDG rods).

⁵ HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).

⁶ 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical

composition and mechanical property requirements of ASTM F1554.

Steel design strength for Hilti HIT-Z anchor rods for use with ACI 318-14 Ch. 17

Nominal		HIT-Z (HIT-HY 200 only) ⁴		HIT-Z-R (HIT-HY 200 only) Stainless Steel ⁴					
anchor diameter in.	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{sa,eq}$ Ib (kN)	Tensile¹ ΦN _{sa} Ib (kN)	Shear² ΦV _{sa} Ib (kN)	Seismic Shear ³ $\Phi V_{sa,eq}$ Ib (kN)			
3/8	4,750	1,930	1,930	4,750	2,630	2,630			
5/0	(21.1)	(8.6)	(8.6)	(21.1)	(11.7)	(11.7)			
1/0	8,695	3,530	2,295	8,695	4,815	3,610			
1/2	(38.7)	(15.7)	(10.2)	(38.7)	(21.4)	(16.1)			
E /0	13,850	5,625	3,655	13,850	7,670	4,985			
0/0	(61.6)	(25.0)	(16.3)	(61.6)	(34.1)	(22.2)			
0./4	20,455	8,310	5,400	20,455	11,330	7,365			
3/4	(91.0)	(37.0)	(24.0)	(91.0)	(50.4)	(32.8)			

¹ Tensile = $\Phi A_{seN} f_{un}$ as noted in ACI 318-14 17.4.1.2 ² Shear value for HIT-Z and HIT-Z-R anchor rods is based on static shear testing with $\Phi V_{un} \le \Phi$ 0.60 $A_{seV} f_{un}$ as noted in ACI 318-14 17.5.1.2b. ³ Seismic Shear = $\alpha_{V_{univ}} \Phi V_{un}$: Reduction factor for seismic shear only. See ACI 318 for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-R rods. Refer to ESR-3814.

⁴ HAS-R stainless steel threaded rods, HIT-Z, and HIT-Z-R anchor rods are considered brittle steel elements.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14

The following steel design information is for Hilti HAS threaded rods and HIT-Z anchor rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with CSA A23.3-14 Annex D. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods and Hilti HIT-Z anchor rods for use with CSA A23.3-14 Annex D

Design Informatior	1	Symbol	Units		N	lominal Rod	Diameter (ir	ı.)				
				3/8	1/2	5/8	3/4	7/8	1			
Rod O.D.		d	in.	0.375	0.5	0.625	0.75	0.875	1			
Rod effective cros	s-sectional area	A _{se}	in. ² (mm ²)	0.0775 (50)	0.1419 (92)	0.2260 (146)	0.3345 (216)	3/4 7/8 1 .75 0.875 1 .3345 0.4617 0.60 (16) (298) (39') ,400 26,780 35,1'' 6.3) (119.1) (156 ,640 16,070 21,0 1.8) (71.5) (93. ,090 34,630 45,4' (11.6) (154.0) (202 ,055 20,780 27,2' 7.0) (92.4) (121 ,710 57,575 75,5' 35.5) (256.1) (336 ,025 34,545 45,3' 11.3) (153.7) (201				
4.		N	lb	4,495	8,230	13,110	19,400	26,780	35,130			
9 G	Neminal attempts on any arread by steel attempts	IN _{sa}	(kN)	(20.0)	(36.6)	(58.3)	(86.3)	(119.1)	(156.3)			
Gr.	Nominal strength as governed by steel strength		lb	2,695	4,940	7,865	11,640	16,070	21,080			
S-V 1-36 554		V _{sa}	(kN)	(12.0)	(22.0)	(35.0)	(51.8)	(71.5)	(93.8)			
HA 4S-V	Reduction factor, seismic shear	α _{v,seis}	-			Nominal Rod Diameter (in.) 5/8 3/4 7/8 0.625 0.75 0.875 0.2260 0.3345 0.4617 (146) (216) (298) 13,110 19,400 26,780 (58.3) (86.3) (119.1) 7,865 11,640 16,070 (35.0) (51.8) (71.5) 0.6 0.80 (119.1) 7,865 11,640 16,070 (35.0) (51.8) (71.5) 0.6 0.80 (75.4) 16,950 25,090 34,630 (75.4) (111.6) (154.0) 10,170 15,055 20,780 (45.2) (67.0) (92.4) 0.7 (111.3) (153.7) 0.80 (125.6) (140.0) 16,910 25,025 34,545 (75.2) (111.3) (153.7) 0.7 0.7 0.7 0.7 0.7 0.7 <tr< td=""><td></td></tr<>						
H⊀ STS	Strength reduction factor R for tension ²	R	-									
AS	Strength reduction factor R for shear ²	R	-			0.	75					
4,1			lb	5,815	10,645	16,950	25,090	34,630	45,430			
55 -		N _{sa}	(kN)	(25.9)	(47.4)	(75.4)	(111.6)	(154.0)	(202.1)			
55 HD Gr.	Nominal strength as governed by steel strength		lb	3,490	6,385	10,170	15,055	20,780	27,260			
3-E- 555 554		V _{sa}	(kN)	(15.5)	(28.4)	(45.2)	(67.0)	(92.4)	(121.3)			
S-E F1(Reduction factor, seismic shear		-			0.	7 (3)					
_ HA	Strength reduction factor R for tension ²	R	-	1		0.	80					
AS	Strength reduction factor R for shear ²	R	-			0.	75					
		1	lb	9,665	17,695	28,180	41,710	57,575	75,530			
g and		N _{sa}	(kN)	(43.0)	(78.7)	(125.4)	(185.5)	(256.1)	(336.0)			
05 B7 S4 05	Nominal strength as governed by steel strength		lb lb	5.800	10.615	16.910	25.025	34.545	45.320			
B-1 105 93 5 14		V _{sa}	(kN)	(25.8)	(47.2)	(75.2)	(111.3)	(153.7)	(201.6)			
101 105-B- 11A1 107 107	Reduction factor, seismic shear	α.	-	()	()	0.	7 ⁽³⁾	()	()			
HAS ATA AST	Strength reduction factor B for tension ²	R	-			0	80					
- X	Strength reduction factor B for shear ²	B	-			0	75					
			lb	7,750	14,190	22,600	28,435	39.245	51,485			
Stee ∕		N _{sa}	(kN)	(34.5)	(63.1)	(100.5)	(126.5)	(174.6)	(229.0)			
S ² O	Nominal strength as governed by steel strength		lh	4 650	8 515	13 560	17.060	23 545	30,890			
uinle 593 1les		V _{sa}	(kN)	(20.7)	(37.9)	(60.3)	(75.9)	(104.7)	(137.4)			
Sta M F Stair	Reduction factor seismic shear	α.	-	(2011)	(01.10)	0.3	7 (3)	()	()			
S-R AST	Strength reduction factor B for tension ²	R R				0	70					
AH ,	Strength reduction factor B for shear ²	B	_			0.	65					
		1	lb	7.305	13 375	21.305	31.470	-	-			
p (S		N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	-	-			
n Bc	Nominal strength as governed by steel strength		lb	3 215	5.885	9.375	13,850	-	-			
choi 200		V _{sa}	(kN)	(14.3)	(26.2)	(41.7)	(61.6)	-	-			
An	Reduction factor seismic shear	α	-	1.00	(=0:=)	0.65	(0110)					
Z TH	Strength reduction factor B for tension ²	R R			0	70						
ΞŪ	Strength reduction factor B for shear ²	B			0.	65						
			lb	7 305	13 375	21.305	31 470	_	_			
bog (∕r -		N _{sa}	(kN)	(32.5)	(59.5)	(94.8)	(140.0)	_	_			
or F onl teel	Nominal strength as governed by steel strength		lb	4 385	8 025	12 785	18 885					
nch 200 3s S		V _{sa}	(kN)	(19.5)	(35.7)	(56.9)	(84 0)	_	_			
R A HY nles	Reduction factor seismic shear	α	-	1.00	0.75	(00.0)	65	-	L			
Γ-Z- HIT-I Stai	Strength reduction factor R for tension ²	v,seis R		1.00	0.70	1 0. 70						
Η	Strength reduction factor P for choor 2	n D			0.	65		-				
	oriengen reduction racion n für Stiear -		· ·	1	0.	00		-				

Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be Values provided for hild threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be appropriate for rod strength.
For use with the load combinations of CSA A23.3-14 Clause 8.
For HIT-RE 500 V3, the value of α_{vises} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.
3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical

property requirements of ASTM F1554.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14

The following steel design information is for Hilti HAS threaded rods according to the material specifications on page 2, used in conjunction with Hilti adhesive anchors designed in accordance with CSA A23.3-14 Annex D. This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel design information for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

Design Informa	ation	Symbol	Units	Nominal Rod Diameter (in.) 1-1/8 1-1/4 1-1/2 1-3/4 2 2-1/4 2-1/ 1.125 1.25 1.5 1.75 2 2.25 2.5 0.7633 0.9691 1.405 1.90 2.50 3.25 4.00 (492) (625) (906) (1,226) (1,613) (2,097) (2,58 44,270 56,210 81,490 110,200 145,000 - - (196.9) (250.0) (362.5) (490.2) (645.0) - - 26,560 33,725 48,895 66,120 87,000 - - (118.1) (150.0) (217.5) (294.1) (387.0) - - 0.6 - - - - - - - (18.1) (150.0) (217.5) (294.1) (387.0) - - - - (254.7) (323.3) (468.7) (633.9) (834.0) -<						
				1-1/8	1-1/4	1-1/2	1-3/4	2	2-1/4	2-1/2
Rod O.D.		d	in.	1.125	1.25	1.5	1.75	2	2.25	2.5
Rod effective of	cross-sectional area	A _{se}	in. ² (mm ²)	0.7633	0.9691	1.405	1.90	2.50	3.25 (2.097)	4.00
			lb	44.270	56,210	81,490	110,200	145,000	-	-
မို		N _{sa}	(kN)	(196.9)	(250.0)	(362.5)	(490.2)	(645.0)	-	-
Er HD 36	Nominal strength as governed by steel strength		lb	26,560	33,725	48,895	66,120	87,000	-	-
554 5		V _{sa}	(kN)	(118.1)	(150.0)	(217.5)	(294.1)	(387.0)	-	-
AS-V M F1	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
A ITS	Strength reduction factor R for tension ²	R	-				-	-		
	Strength reduction factor R for shear ²	R	-		0.75			-	-	
-		N	lb	57,250	72,685	105,375	142,500	187,500	-	-
)G : 55	Neminal strength on accurred by steel strength	IN _{sa}	(kN)	(254.7)	(323.3)	(468.7)	(633.9)	(834.0)	-	-
-55 HD HC	Nominal strength as governed by steel strength	V	lb	34,350	43,610	63,225	85,500	112,500	-	-
S-E ⊡-55 554		V sa	(kN)	(152.8)	(194.0)	(281.2)	(380.3)	(500.4)	-	-
HA: VS-E	Reduction factor, seismic shear	α _{v,seis}	-			0.7 (3)			-	-
STN	Strength reduction factor R for tension ²	R	-			0.80			-	-
₹	Strength reduction factor R for shear ²	R	-	0.75					-	-
D		N	lb	95,185	120,845	175,205	236,930	311,750	405,275	498,800
4 and DG	Nominal strength as governed by steel strength	IN _{sa}	(kN)	(423.4)	(537.5)	(779.3)	(1,053.9)	(1,386.7)	(1,802.7)	(2,218.8)
105 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H	Nominal strength as governed by steel strength	V	lb	57,110	72,505	105,125	142,160	187,050	243,165	299,280
A F 10 193		v _{sa}	(kN)	(254.0)	(322.5)	(467.6)	(632.4)	(832.0)	(1,081.6)	(1,331.3)
S-B S-B ST Gr	Reduction factor, seismic shear	α _{v,seis}	-				0.7 (3)			
AST AST	Strength reduction factor R for tension ²	R	-				0.80			
	Strength reduction factor R for shear ²	R	-				0.75			
iel),		N	lb	43,510	55,240	80,085	108,300	142,500	-	-
Ste 8(N	Nominal strength as governed by steel strength	IN _{sa}	(kN)	(193.5)	(245.7)	(356.2)	(481.7)	(633.9)	-	-
ess Gr. 1 ¹	Nominal strength as governed by steel strength		lb	26,105	33,145	48,050	64,980	85,500	-	-
tainl 93, ass		v _{sa}	(kN)	(116.1)	(147.4)	(213.7)	(289.0)	(380.3)	-	-
A A1 CIL	Reduction factor, seismic shear	α _{v,seis}	-			0.6			-	-
AS- STI	Strength reduction factor R for tension ²	R	-			0.80			-	-
	Strength reduction factor R for shear ²	R	-	0.75 -					-	-

¹ Values provided for Hilti threaded rod materials based on published strengths and calculated in accordance with CSA A23.3-14 Annex D Eq. D.2 and Eq. D.31. Nuts and washers must be appropriate for rod strength.

² For use with the load combinations of CSA A23.3-14 Clause 8. ³ For HIT-RE 500 V3, the value of α_{visels} can be increased. Refer to ICC-ES ESR-3814 or contact Hilti.

LIMIT STATES DESIGN ACCORDING TO CSA A23.3-14

The following are strength design values calculated from data on the previous pages. This is intended for adhesive anchors designed in accordance with CSA A23.3-14 Annex D and can be used in conjunction with the Hilti Simplified Strength Design Tables (refer to Section 3.1.8 of the 2016 and 2017 Hilti Anchor Fastening Technical Guide for more information on the Hilti Simplified Tables). This includes Hilti HIT-HY 200, HIT-RE 500 V3, HIT-RE 100, HIT-HY 100, and HIT-ICE.

Steel factored resistance for Hilti HAS threaded rods for use with CSA A23.3-14 Annex D

Nominal	HAS-V AST	-36 / HAS-V- M F1554 Gr.	36 HDG 36 ^{4,6}	HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 55 4.5.6			HAS-B-1 AS ASTN	105 / HAS-B- TM A193 B7 // F 1554 Gr.	105 HDG and 105 ^{4,6}	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ⁵ ASTM A193 (1-1/8-in to 2-in) ⁴			
anchor diameter in.	Tensile¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile¹ N _{sar} Ib (kN)	Shear² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile¹ N _{sar} Ib (kN)	Shear² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	Tensile¹ N _{sar} Ib (kN)	Shear² V _{sar} Ib (kN)	Seismic Shear ³ V _{sar,eq} Ib (kN)	
3/8	3,055	1,720	1,030	3,955	2,225	1,560	6,570	3,695	2,585	4,610	2,570	1,800	
5/0	(13.6)	(7.7)	(4.6)	(17.6)	(9.9)	(6.9)	(29.2)	(16.4)	(11.5)	(20.5)	(11.4)	(8.0)	
1/2	5,595	3,150	1,890	7,240	4,070	2,850	12,035	6,765	4,735	8,445	4,705	3,295	
1/2	(24.9)	(14.0)	(8.4)	(32.2)	(18.1)	(12.7)	(53.5)	(30.1)	(21.1)	(37.6)	(20.9)	(14.7)	
5/8	8,915	5,015	3,010	11,525	6,485	4,540	19,160	10,780	7,545	13,445	7,490	5,245	
5/6	(39.7)	(22.3)	(13.4)	(51.3)	(28.8)	(20.2)	(85.2)	(48.0)	(33.6)	(59.8)	(33.3)	(23.3)	
2/4	13,190	7,420	4,450	17,060	9,600	6,720	28,365	15,955	11,170	16,920	9,425	6,600	
3/4	(58.7)	(33.0)	(19.8)	(75.9)	(42.7)	(29.9)	(126.2)	(71.0)	(49.7)	(75.3)	(41.9)	(29.4)	
7/0	18,210	10,245	6,145	23,550	13,245	9,270	39,150	22,020	15,415	23,350	13,010	9,105	
//0	(81.0)	(45.6)	(27.3)	(104.8)	(58.9)	(41.2)	(174.1)	(97.9)	(68.6)	(103.9)	(57.9)	(40.5)	
-	23,890	13,440	8,065	30,890	17,380	12,165	51,360	28,890	20,225	30,635	17,065	11,945	
I	(106.3)	(59.8)	(35.9)	(137.4)	(77.3)	(54.1)	(228.5)	(128.5)	(90.0)	(136.3)	(75.9)	(53.1)	
1.1/0	30,105	16,930	10,160	38,930	21,900	15,330	64,725	36,410	25,485	29,585	16,640	9,985	
1-1/8	(133.9)	(75.3)	(45.2)	(173.2)	(97.4)	(68.2)	(287.9)	(162.0)	(113.4)	(131.6)	(74.0)	(44.4)	
/4	38,225	21,500	12,900	49,425	27,800	19,460	82,175	46,220	32,355	37,565	21,130	12,680	
1-1/4	(170.0)	(95.6)	(57.4)	(219.9)	(123.7)	(86.6)	(365.5)	(205.6)	(143.9)	(167.1)	(94.0)	(56.4)	
1.1/0	55,415	31,170	18,700	71,655	40,305	28,215	119,140	67,015	46,910	54,460	30,630	18,380	
1-1/2	(246.5)	(138.7)	(83.2)	(318.7)	(179.3)	(125.5)	(530.0)	(298.1)	(208.7)	(242.2)	(136.2)	(81.8)	
1.0/1	74,935	42,150	25,290	96,900	54,505	38,155	161,110	90,625	63,435	73,645	41,425	24,855	
1-3/4	(333.3)	(187.5)	(112.5)	(431.0)	(242.4)	(169.7)	(716.6)	(403.1)	(282.2)	(327.6)	(184.3)	(110.6)	
0	98,600	55,460	33,275	127,500	71,720	50,205	211,990	119,245	83,470	96,900	54,505	32,705	
2	(438.6)	(246.7)	(148.0)	(567.1)	(319.0)	(223.3)	(943.0)	(530.4)	(371.3)	(431.0)	(242.4)	(145.5)	
	-	-	-	-	-	-	275,585	155,020	108,515	-	-	-	
2-1/4	-	-	-	-	-	-	(1,225.9)	(689.6)	(482.7)	-	-	-	
0.1/0	-	-	-	-	-	-	339,185	190,790	133,555	-	-	-	
2-1/2	-	-	-	-	-	-	(1,508.8)	(848.7)	(594.1)	-	-	-	

2

Tensile = $A_{xev} \Phi_s f_{ten}$ R as noted in CSA A23.3-14 Eq. D.2. Shear = $A_{xev} \Phi_s 0.60 f_{ten}$ R as noted in CSA A23.3-14 Eq. D.2. Shear = $A_{xev} \Phi_s 0.60 f_{ten}$ R as noted in CSA A23.3-14 Eq. D.31. Seismic Shear = $\alpha_{vase} V_{ase}$: Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-E, HAS-B, and HAS-R CW1 and CW2 threaded rods (including HDG rods). Refer to ESR-3814. HAS-E (3/8-in to 2-in), HAS-B, and HAS-R (CBas 1; 1-1/8-in to 2-in) threaded rods are considered ductile steel elements (included HDG rods). HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods). HAS-E (2-1/4-in to 2-1/2-in) and HAS-R (CW1 and CW2; 3/8-in to 1-in) threaded rods are considered brittle steel elements (including HDG rods).

⁶ 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical

composition and mechanical property requirements of ASTM F1554.

Steel factored resistance for Hilti HIT-Z anchor rods for use with CSA A23.3-14 Annex D

Nominal		HIT-Z (HIT-HY 200 only) ⁴		HIT-Z-R (HIT-HY 200 only) Stainless Steel ⁴					
anchor diameter in.	Tensile¹ N _{sar} Ib (kN)	Shear ² V _{sar} Ib (kN)	Image: heightarrow of the image: heightarrow of	Seismic Shear ³ V _{sar.eq} Ib (kN)					
3/8	4,345	4,035	2,420	4,345	2,420	2,420			
5/0	(19.3)	(17.9)	(10.8)	(19.3)	(10.8)	(10.8)			
1/0	7,960	7,390	4,435	7,960	4,435	3,325			
1/2	(35.4)	(32.9)	(19.7)	(35.4)	(19.7)	(14.8)			
F /0	12,675	11,770	7,060	12,675	7,065	4,590			
5/6	(56.4)	(52.4)	(31.4)	(56.4)	(31.4)	(20.4)			
0./4	18,725	17,390	10,435	18,725	10,435	6,785			
3/4	(83.3)	(77.4)	(46.4)	(83.3)	(46.4)	(30.2)			

¹ Tensile = $A_{seN} \Phi_s f_{trat} R$ as noted in CSA A23.3-14 Eq. D.2. ² Shear value for HIT-Z and HIT-Z R anchor rods is based on static shear testing with $V_{sar} ≤ A_{seV} \Phi_s 0.60 f_{trat} R$ as noted in CSA A23.3-14 Eq. D.31. ³ Seismic Shear = $\alpha_{Vaets} V_{arr}$: Reduction factor for seismic shear only. See CSA A23.3 Annex D for additional information on seismic applications. Seismic shear for HIT-RE 500 V3 may be increased for HAS-R rods. Refer to ESR-3814.

HAS-R stainless steel threaded rods, HIT-Z, and HIT-Z-R anchor rods are considered brittle steel elements.

TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD)

The following technical data is for adhesive anchors that will be designed in accordance with the Allowable Stress Design method (ASD). This includes Hilti HIT-HY 270 for masonry, HIT-HY 200 for masonry, HIT-HY 100 for masonry, HIT-ICE, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules. Note:

- Hilti HAS-V-36 threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod does not have a chisel point to break and mix the capsules during installation.
- Hilti HIT-Z Anchor Rods do not have ASD load data since they are only used in conjunction with Hilti HIT-HY 200.

Allowable steel strength for Hilti HAS threaded rods 1

Nominal	HAS-V-36 / H ASTM F15	AS-V-36 HDG 554 Gr. 36 ²	HAS-E-55 / H ASTM F15	AS-E-55 HDG 554 Gr. 55 ²	HAS-B-105 and ASTM A1 ASTM F 15	HAS-B-105 HDG 93 B7 and 554 Gr. 105 ²	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ASTM A193 (1/4-in and 1-1/8-in to 2-in)		
diameter in.	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	
1 //	-	-	-	-	-	-	925	475	
1/4	-	-	-	-	-	-	(4.1)	(2.1)	
3/9	2,115	1,090	2,730	1,410	4,555	2,345	3,645	1,875	
5/0	(9.4)	(4.8)	(12.1)	(6.3)	(20.3)	(10.4)	(16.2)	(8.3)	
1/2	3,755	1,935	4,860	2,505	8,095	4,170	6,480	3,335	
1/2	(16.7)	(8.6)	(21.6)	(11.1)	(36.0)	(18.5)	(28.8)	(14.8)	
5/8	5,870	3,025	7,595	3,910	12,655	6,520	10,125	5,215	
5/6	(26.1)	(13.5)	(33.8)	(17.4)	(56.3)	(29.0)	(45.0)	(23.2)	
2/4	8,455	4,355	10,935	5,635	18,225	9,390	12,390	6,385	
	(37.6)	(19.4)	(48.6)	(25.1)	(81.1)	(41.8)	(55.1)	(28.4)	
7/0	11,510	5,930	14,880	7,665	24,805	12,780	16,865	8,690	
1/0	(51.2)	(26.4)	(66.2)	(34.1)	(110.3)	(56.8)	(75.0)	(38.7)	
1	15,035	7,745	19,440	10,015	32,400	16,690	22,030	11,350	
I	(66.9)	(34.5)	(86.5)	(44.5)	(144.1)	(74.2)	(98.0)	(50.5)	
1 1 /0	19,025	9,800	24,600	12,675	41,005	21,125	18,695	9,630	
1-1/0	(84.6)	(43.6)	(109.4)	(56.4)	(182.4)	(94.0)	(83.2)	(42.8)	
1 1 //	23,490	12,100	30,375	15,645	50,620	26,080	23,085	11,890	
1-1/4	(104.5)	(53.8)	(135.1)	(69.6)	(225.2)	(116.0)	(102.7)	(52.9)	
1 1/0	33,825	17,425	43,735	22,530	72,895	37,550	33,240	17,125	
1-1/2	(150.5)	(77.5)	(194.5)	(100.2)	(324.3)	(167.0)	(147.9)	(76.2)	
1.9/4	46,035	23,715	59,530	30,665	99,220	51,110	45,245	23,305	
1-3/4	(204.8)	(105.5)	(264.8)	(136.4)	(441.4)	(227.3)	(201.3)	(103.7)	
0	60,130	30,975	77,755	40,055	129,590	66,760	59,095	30,440	
2	(267.5)	(137.8)	(345.9)	(178.2)	(576.4)	(297.0)	(262.9)	(135.4)	
0.1/4	-	-	-	-	164,015	84,490	-	-	
2-1/4	-	-	-	-	(729.6)	(375.8)	-	-	
0.1/0	-	-	-	-	202,485	104,310	-	-	
2-1/2	-	-	-	-	(900.7)	(464.0)	-	-	

¹ Steel strength as defined in AISC Manual of Steel Construction (ASD):

Tensile = $0.33 \times F_u \times Nominal Area$ $Shear = <math>0.17 \times F_u \times Nominal Area$

² 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

TECHNICAL DATA — ALLOWABLE STRESS DESIGN (ASD) - CONTINUED

The following technical data is for adhesive anchors that will be designed in accordance with the Allowable Stress Design Method (ASD). This includes Hilti HIT-HY 270 for masonry, HIT-HY 200 for masonry, HIT-HY 100 for masonry, HIT-ICE, HIT-HY 10 PLUS, HIT-1, HTE 50 and HVU Capsules. Note:

- Hilti HAS-V-36 threaded rods are not applicable for use with Hilti HVU Capsules since the end of the rod does not have a chisel point to break and mix the capsules during installation.
- Hilti HIT-Z Anchor Rods do not have ASD load data since they are only used in conjunction with Hilti HIT-HY 200.

Ultimate steel strength for Hilti HAS threaded rods 1

Nominal	HAS-V AST	-36 / HAS-V-3 FM F1554 Gr.	36 HDG 36²	HAS-E-55 / HAS-E-55 HDG ASTM F1554 Gr. 55 ²			HAS-B-1 AS ASTI	05 / HAS-B- ⁻ TM A193 B7 a M F 1554 Gr.	105 HDG and 105 ²	HAS-R Stainless Steel ASTM F593 (3/8-in to 1-in) ASTM A193 (1/4-in and 1-1/8-in to 2-in)			
diameter in.	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield Ib (kN)	Tensile lb (kN)	Shear Ib (kN)	Yield lb (kN)	Tensile Ib (kN)	Shear Ib (kN)	Yield Ib (kN)	Tensile Ib (kN)	Shear Ib (kN)	
1/4	-	-	-	-	-	-	-	-	-	955 (4,2)	2,100 (9.3)	1,260 (5.6)	
3/8	2,790	4,800	2,880	4,265 (19.0)	6,210 (27.6)	3,725	8,140 (36,2)	10,350 (46.0)	6,210 (27.6)	5,040 (22,4)	8,280 (36.8)	4,970	
1/2	5,110	8,540	5,125	7,805	11,040	6,625	14,900	18,405	11,040	9,225	14,725	8,835	
	(22.7) 8,135	(38.0) 13,345	(22.8) 8,005	(34.7) 12,430	(49.1) 17,260	(29.5) 10,355	(66.3) 23,730	(81.9) 28,765	(49.1) 17,260	(41.0) 14,690	(65.5) 23,010	(39.3) 13,805	
5/8	(36.2)	(59.4)	(35.6)	(55.3)	(76.8)	(46.1)	(105.6)	(128.0)	(76.8)	(65.3)	(102.4)	(61.4)	
3/4	12,040	19,220	11,530	18,400	24,850	14,910	35,125	41,420	24,850	15,055	28,165	16,900	
	(53.6)	(85.5)	(51.3)	(81.8)	(110.5)	(66.3)	(156.2)	(184.2)	(110.5)	(67.0)	(125.3)	(75.2)	
7/8	(73.9)	(116.3)	(69.8)	(113.0)	(150.5)	(90.3)	(215.6)	(250,7)	(150.5)	(92.4)	(170.5)	(102.3)	
	21.805	34,165	20,500	33.315	44,180	26.505	63 600	73.630	44.180	27.255	50.070	30.040	
1	(97.0)	(152.0)	(91.2)	(148.2)	(196.5)	(117.9)	(282.9)	(327.5)	(196.5)	(121.2)	(222.7)	(133.6)	
1-1/8	27,480	43,240	25,945	41,980	55,915	33,550	80,145	93,190	55,915	22,900	42,495	25,495	
	(122.2)	(192.3)	(115.4)	(186.7)	(248.7)	(149.2)	(356.5)	(414.5)	(248.7)	(101.9)	(189.0)	(113.4)	
1-1/4	34,890	53,385	32,030	53,300	69,030	41,420	101,755	115,050	69,030	29,075	52,465	31,480	
	(155.2)	(237.5)	(142.5)	(237.1)	(307.1)	(184.2)	(452.6)	(511.8)	(307.1)	(129.3)	(233.4)	(140.0)	
1-1/2	50,590	76,870	46,125	77,290	99,400	59,640	147,550	165,670	99,400	42,160	75,545	45,325	
	(223.0)	104 630	(203.2)	(343.0)	(442.2)	(200.0)	100 / / /5	225 495	(442.2)	(107.5)	102 825	61 605	
1-3/4	(304.2)	(465.4)	(279.3)	(464.7)	(601.8)	(361.1)	(887.2)	(1.003.0)	(601.8)	(253.5)	(457.4)	(274.4)	
	89.935	136.660	81.995	137.400	176.715	106.030	262.315	294.525	176.715	74.945	134.305	80.580	
2	(400.0)	(607.9)	(364.7)	(611.2)	(786.1)	(471.6)	(1,166.8)	(1,310.1)	(786.1)	(333.4)	(597.4)	(358.4)	
2-1/4	-	-	-	-	-	-	341,005	372,755	223,655	-	-	-	
	-	-	-	-	-	-	(1,516.9)	(1,658.1)	(994.9)	-	-	-	
2-1/2	-	-	-	-	-	-	419,875 (1,867.7)	460,195 (2,047.0)	276,115 (1,228.2)	-	-	-	

¹ Steel strength as defined in AISC Manual of Steel Construction (LRFD):

Yield = F_y x Tensile stress area Tensile = 0.75 x F_x x Nominal Area Shear = 0.45 x F_x x Nominal Area

² 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

ORDERING INFORMATION

Hilti HIT-Z Anchor rods for Hilti HIT-HY 200 Anchoring system

HIT-Z Carbon Ste	el	HIT-Z-R 316 Stainless	HIT-Z (-R) Length Code			
Description	Description Qty		Qty			
3/8" x 3-3/8"	40	3/8" x 3-3/8"	40	D		
3/8" x 4-3/8"	40	3/8" x 4-3/8"	40	F		
3/8"x 5-1/8"	40	3/8"x 5-1/8"	40	н		
3/8" x 6-3/8"	40	3/8" x 6-3/8"	40	J		
1/2" x 4-1/2" 20		1/2" x 4-1/2"	20	F		
1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	J		
1/2" x 7-3/4"	20	1/2" x 7-3/4"	20	М		
5/8" x 6"	12	5/8" x 6"	12	I		
5/8" x 8"	12	5/8" x 8"	12	М		
5/8" x 9-1/2"	12	5/8" x 9-1/2"	12	Р		
3/4" x 6-1/2"	6	3/4" x 6-1/2"	6	J		
3/4" x 8-1/2"	6	3/4" x 8-1/2"	6	N		
3/4" x 9-3/4"	6	3/4" x 9-3/4"	6	Q		

Overview of the Hilti HAS standard off-the-shelf anchor rod program for Hilti chemical anchoring systems¹

HAS-V does not c	th chisel point	HAS-E, HAS-B, and HAS-R all come with chisel point									
HAS-V-36 HAS-E-55			HAS-B-105		HAS-B-105 HDG Hot-dipped galvanized		HAS-R 304 Stainless Steel		HAS-R 316 Stainless Steel		
Description	Qty	Description	Qty	Description	Qty	Description	Qty	Description	Qty	Description	Qty
	-	3/8" x 3"	20	-	-	-	-	-	-	-	-
3/8" x 4-3/8"	20	3/8" x 4-3/8"	20	-	-	-	-	-	-	-	-
3/8" x 5-1/8"	20	3/8" x 5-1/8"	20	3/8" x 5-1/8"	20	-	-	3/8" x 5-1/8"	20	3/8" x 5-1/8"	20
3/8" x 8"	10	3/8" x 8"	10	-	-	-	-	3/8" x 8"	10	3/8" x 8"	10
-	-	3/8" x 12"	10	-	-	-	-	-	-	-	-
	-	1/2" x 3-1/8"	20	-	-	-	-	-	-	-	-
1/2" x 4-1/2"	20	1/2" x 4-1/2"	20	-	-	-	-	-	-	-	-
1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	1/2" x 6-1/2"	20	-	-	1/2" x 6-1/2"	20	1/2" x 6-1/2"	20
1/2" x 8"	10	1/2" x 8"	10	-	-	1/2" x 8"	10	1/2" x 8"	10	1/2" x 8"	10
-	-	1/2" x 10"	10	-	-	-	-	1/2" x 10"	10	1/2" x 11"	10
-	-	1/2" x 12"	10	-	-	-	-	-	-	1/2" x 12"	10
5/8" x 6"	10	5/8" x 6"	10	-	-	-	-	-	-	-	-
5/8" x 8"	10	5/8" x 8"	10	5/8" x 8"	10	5/8" x 8"	10	5/8" x 7-5/8"	5/8" x 7-5/8" 20 !		20
5/8" x 10"	10	5/8" x 9"	10	-	-	-	-	5/8" x 10"	10	5/8" x 9"	10
5/8" x 12"	10	5/8" x 12"	10	-	-	5/8" x 12"	10	-	-	5/8" x 12"	10
-	-	5/8" x 17"	10	-	-	-	-	-	-	-	-
3/4" x 6"	10	3/4" x 6"	10	-	-	-	-	-	-	-	-
3/4" x 8"	10	3/4" x 8"	10	-	-	-	-	-	-	-	-
3/4" x 10"	10	3/4" x 10"	10	3/4" x 10"	10	3/4" x 10"	10	3/4" x 9-5/8"	10	3/4" x 9-5/8"	10
	-	3/4" x 11"	10	-	-	-	-	-	-	3/4" x 10"	10
3/4" x 12"	10	3/4" x 12"	10	-	-	-	-	3/4" x 12"	10	-	-
-	-	3/4" x 14"	10	3/4" x 14"	10	3/4" x 14"	10	3/4" x 14"	10	-	-
3/4" x 16"	10	3/4" x 17"	10	-	-	-	-	3/4" x 16"	10	3/4" x 16"	10
-	-	3/4" x 19"	8	-	-	3/4"x20"	8	-	-	-	-
-	-	3/4" x 21"	8	-	-	-	-	-	-	-	-
-	-	3/4" x 25"	4	-	-	-	-	-	-	-	-
-	-	7/8" x 10"	10	-	-	7/8" x 10"	10	7/8" x 10"	10	7/8" x 10"	10
-	-	7/8" x 13"	8	-	-	7/8" x 12"	10	-	-	-	-
-	-	-	-	-	-	7/8" x 16"	10	-	-	7/8" x 16"	10
1" x 12"	4	1" x 12"	4	1" x 12"	4	-	-	1" x 12"	4	1" x 12"	4
-	-	1" x 14"	4	1" x 14"	4	-	-	-	-	-	-
-	-	1" x 16"	2	1" x 16"	2	1" x 16"	2	-	-	1" x 16"	2
-	-	1" x 20"	2	1" x 21"	2	1" x 21"	2	-	-	1" x 20"	2
-	-	1-1/4" x 16"	2	1-1/4" x 16"	2	1-1/4" x 16"	2	-	-	-	-
-	-	1-1/4" x 22"	2	1-1/4" x 23"	2	-	-	-	-	-	-

¹ Additional diameters and lengths see extended anchor rod program on page 14.

EXTENDED HILTI ANCHOR ROD PROGRAM ORDERING INFORMATION

The following threaded rod ordering information is for the Hilti extended rod program according to the material specifications on page 2.

				Electro plated Hot dip galvanized							Stainless steel	
		Min. length in.	Max. length in.	ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM F1554 Grade 105	ASTM F1554 Grade 36	ASTM F1554 Grade 55	ASTM F1554 Grade 105	SS304	SS316	
	1/4	2	144									
	3/81	2	144									
· diameter (in.)	1/2	2	144									
	5/8	3	144									
	3/4	4	144									
	7/8	4	144									
	1	5	144									
ncho	1-1/8	6	144									
Nominal a	1-1/4	6	144									
	1-1/2	8	144									
	1-3/4	9	144									
	2	11	144									
	2-1/4	12	144								\geq	
	2-1/2	13	144									

Extended rod offering

= typical lead time 2-4 working days plus shipping ² = available but longer lead time

¹ 3/8-inch dia. threaded rods are not included in the ASTM F1554 standard. Hilti 3/8-inch dia. HAS-V, HAS-E, and HAS-E-B (incl. HDG) threaded rods meet the chemical composition and mechanical property requirements of ASTM F1554.

² up to following quantities: 1/4" to 3/4" > 250 pieces, 7/8" to 1-1/4" > 100 pieces, 1-1/2" to 2-1/2" > 50 pieces. Bigger quantities contact Hilti for lead time.

Hilti threaded rods in the Hilti Extended Anchor Rod Program are stamped on the end to show grade of steel.						
HV	HAS-V-36 / HAS-V-36 HDG ASTM F1554, Grade 36					
H E	HAS-E-55 / HAS-E-55 HDG ASTM F1554, Grade 55					
H B	HAS-B-105 / HAS-B-105 HDG ASTM A193, Grade B7 ASTM F1554, Grade 105					
SS304 H R1	HAS-R 304SS 1/4-in. ASTM A193 Grade B8, Class 1 3/8-in. to 5/8-in. AISI Type 304 ASTM F593 CW1 3/4-in. to 1-in. AISI Type 304 ASTM F593 CW2 1-1/8-in. to 2-in. ASTM A193 Grade B8, Class 1					
SS316 H R2	HAS-R 316SS 1/4-in. ASTM A193 Grade B8M, Class 1 3/8-in. to 5/8-in. AISI Type 316 ASTM F593 CW1 3/4-in. to 1-in. AISI Type 316 ASTM F593 CW2 1-1/8-in. to 2-in. ASTM A193 Grade B8M, Class 1					

TWO END CUT OPTIONS AVAILABLE

1

Angle cut*

*Not available for HAS-V-36 and HAS-V-36 HDG.

Straight, or flat cut

In the US: Hilti, Inc. 7250 Dallas Parkway, Suite 1000, Dallas, TX 75024 Customer Service: 1-800-879-8000 en español: 1-800-879-5000 Fax: 1-800-879-7000

www.hilti.com

Hilti is an equal opportunity employer. Hilti = registered trademark of Hilti, Corp. LI-9494 Schaan, Principality of Liechtenstein ©Copyright 2023 by Hilti, Inc.

In Canada:

Hilti (Canada) Corporation 2201 Bristol Circle Oakville ON | L6H 0J8 Canada Customer Service: 1-800-363-4458 Fax: 1-800-363-4459

www.hilti.ca

The data contained in this literature was current as of the date of publication. Updates and changes may be made based on later testing. If verification is needed that the data is still current, please contact the Hilti Technical Support Specialists at 1-800-879-8000 (U.S.) or 1-800-363-4458 (Canada). All published load values contained in this literature represent the results of testing by Hilti or test organizations. Local base materials were used. Because of variations in materials, on-site testing is necessary to determine performance at any specific site.